Functions of Bounded Variation with Respect to a Tchebycheff System

R. A. Zalik ${ }^{*}$
Department of Mathematics, Ben Gurion University of the Negev, P. O. Box 2053, Beersheba, Israel
Communicated by Oved Shisha

Received January 11, 1977

For the definition of unexplained terms and for notation employed herein, the reader is referred to [1] or [2]. A brief outline may also be found in [3].

In what follows we assume that $\left\{y_{0}, \ldots, y_{n}\right\}$ is an Extended Complete Tchebycheff system (ECT-system) on a closed interval [a,b], and y and y_{n+1} are real-valued functions thereon.

Let $D\left(y_{0}, \ldots, y_{n} / t_{0}, \ldots, t_{n}\right)$ denote the determinant of the matrix $\| y_{i}\left(t_{j}\right)$; $i, j=0, \ldots, n \|$. As in [2, p. 523], we define the divided difference of y_{n+1} with respect to the system $\left\{y_{0}, \ldots, y_{n}\right\}$ at the points t_{0}, \ldots, t_{n} by means of the determinant expression

$$
\begin{align*}
& {\left[y_{0}, \ldots, y_{n+1} / t_{0}, \ldots, t_{n}\right]} \\
& \quad=D\left(y_{0}, \ldots, y_{n-1}, y_{n+1} / t_{0}, \ldots, t_{n}\right) / D\left(y_{0}, \ldots, y_{n-1}, y_{n} / t_{0}, \ldots, t_{n}\right) . \tag{1}
\end{align*}
$$

In particular, $\left[1, t, \ldots, t^{n}, y / t_{0}, \ldots, t_{n}\right]$ coincides with $y\left[t_{0}, \ldots, t_{n}\right]$, the classical divided difference. To avoid confusion, we note that the definition of divided difference employed in $[4,5]$ differs by a constant factor from the one employed here.

Let $a \leqslant t_{0}<t_{1}<\cdots<t_{m} \leqslant b$ be a partition of $[a, b]$, with $m>n$, and let $Q_{i}=\left[y_{0}, \ldots, y_{n+1} / t_{i}, \ldots, t_{i+n}\right]$. The total variation $V\left(y_{n+1}\right)=V\left(a, b ; y_{0}, \ldots\right.$, $\left.y_{n}, y_{n+1}\right)$ of y_{n+1} with respect to the system $\left\{y_{0}, \ldots, y_{n}\right\}$ on $[a, b]$ is defined by

$$
V\left(y_{n+1}\right)=\sup \sum_{i=1}^{m-n}\left|Q_{i}-Q_{i-1}\right|,
$$

where the supremum is taken over all partitions of $[a, b]$. If $V\left(y_{n+1}\right)<\infty$, we say that y_{n+1} is of bounded variation with respect to the system $\left\{y_{0}, \ldots, y_{n}\right\}$ on $[a, b]$; the set of such functions will be denoted by $B V\left(y_{0}, \ldots, y_{n}\right)$. In

[^0]particular, note that $B V(1)$ coincides with the set of functions of bounded variation in the usual sense. Let the operators D_{i} be defined as in [1, p. 19] or [3], and let $D^{i}=D_{i} D_{i-1} \cdots D_{0}$. We can now state our result:

Theorem. If $n>0$ and y is in $B V\left(y_{0}, \ldots, y_{n}\right)$ on $[a, b]$, then y belongs to the continuity class $C^{n-1}[a, b]$, and $y^{(n-1)}$ has a right derivative everywhere in $[a, b)$, and a left derivative everywhere in ($a, b]$. Moreover, y can be represented as the difference of two nonnegative functions p and q, having the following properties:
(a) For $i=0, \ldots, n, p$ and q are convex with respect to $\left\{y_{0}, \ldots, y_{i}\right\}$ and are contained in $B V\left(y_{0}, \ldots, y_{i}\right)$.
(b) For $i=0, \ldots, n-1$, and $j=i+1, \ldots, n$, the functions $D^{i} p$ and $D^{i} q$ are convex with respect to the system $\left\{D^{i} y_{i+1}, \ldots, D^{i} y_{j}\right\}$ and are in $B V\left(D^{i} y_{i+1}, \ldots, D^{i} y_{j}\right)$.
ror the case $y_{i}(t)=t^{i}, i=0, \ldots, n$, this theorem was essentially proved by Hopf [4] in this thesis. Other proofs were independently given by Popoviciu [5, pp. 27-30, 41-43] in his own thesis, and more recently by Russell [6]. All these proofs are based on the well-known identity

$$
\begin{equation*}
\left(t_{n}-t_{0}\right) \cdot y\left[t_{0}, \ldots, t_{n}\right]=y\left[t_{1}, \ldots, t_{n}\right]-y\left[t_{0}, \ldots, t_{n-1}\right] . \tag{2}
\end{equation*}
$$

This identity has been generalized for arbitrary Tchebycheff systems by Mühlbach, (cf. [7, Theorem 1]). Under very general conditions, encompassing the assumptions that have been made herein, he showed that

$$
\begin{align*}
& {\left[y_{0}, \ldots, y_{n+1} / t_{0}, \ldots, t_{n}\right]} \\
& \quad=\frac{\left[y_{0}, \ldots, y_{n-1}, y_{n+1} / t_{1}, \ldots, t_{n}\right]-\left[y_{0}, \ldots, y_{n-1}, y_{n+1} / t_{0}, \ldots, t_{n-1}\right]}{\left[y_{0}, \ldots, y_{n-1}, y_{n} / t_{1}, \ldots, t_{n}\right]-\left[y_{0}, \ldots, y_{n-1}, y_{n} / t_{0}, \ldots, t_{n-1}\right]} . \tag{3}
\end{align*}
$$

an identity that is used in our proof.
We would like to remark that all three proofs of Hopf's theorem mentioned above make use, at one stage or another, of the specific properties of the functions t^{i}, and cannot be adapted, "mutatis mutandis," to the proof of the general case.

For $n=1$, a proof of Hopf's theorem was given by Roberts and Varberg (cf. [8; 9, pp. 22-27]).

Before turning to the proof of our theorem, we must establish the validity of the following auxiliary proposition, which has some independent interest:

Lemмa. If the function y is differentiable everywhere in $[a, b]$, and $D_{0} y \in B V\left(D_{0} y_{1}, \ldots, D_{0} y_{n}\right)$ thereon, then $y \in B V\left(y_{0}, \ldots, y_{n}\right)$ on $[a, b]$.

Proof. Set $y=y_{n+1}$ and let $y_{1}^{*}=D_{0} y_{i+1}, i=0, \ldots, n$. Let $t_{0}<\cdots<t_{n}$ be a partition of $[a, b]$. Clearly

$$
\begin{equation*}
\left[y_{0}, \ldots, y_{n+1} / t_{0}, \ldots, t_{n}\right]=\left[1, y_{0}^{-1} \cdot y_{1}, \ldots, y_{0}^{-1} \cdot y_{n+1} / t_{0}, \ldots, t_{n}\right] \tag{4}
\end{equation*}
$$

Applying to the right-hand side of the preceding equation a method of proof similar to the one employed in the derivation of Eq. (2.6) in [1, pp. 6-7], or in the proof that Eq. (2.7) and (2.8) in [1, p. 8] coincide, we readily see that

$$
\begin{equation*}
\left[y_{0}, \ldots, y_{n+1} / t_{0}, \ldots, t_{n}\right]=\left[y_{0}^{*}, \ldots, y_{n}^{*} / s_{0}, \ldots, s_{n-1}\right] \tag{5}
\end{equation*}
$$

where $t_{0}<s_{0}<s_{1}<\cdots<s_{n-1}<t_{n}$.
Consider now a partition $t_{0}<\cdots<t_{m}$ of $[a, b]$, with $m>n$. We know from (5) that if $Q_{i}=\left[y_{0}, \ldots, y_{n+1} / t_{i}, \ldots, t_{i+n}\right]$, then $Q_{i}=\left[y_{0}^{*}, \ldots, y_{n}^{*} / s_{i, 0}, \ldots\right.$, $\left.s_{i, n-1}\right]$, where $t_{i}<s_{i, 0}<\cdots<s_{i, n-1}<t_{i+n}$. Let $r_{i}=\max \left\{s_{i-1, n-1}, s_{i, n-1}\right\}$ and let $r_{i}<s_{0}<\cdots<s_{n-1}<t_{i+n}$; setting $Q=\left[y_{0}^{*}, \ldots, y_{n}^{*} / s_{0}, \ldots, s_{n-1}\right]$, from the obvious inequality $\left|Q_{i}-Q_{i-1}\right| \leqslant\left|Q_{i}-Q\right|+\left|Q_{i-1}-Q\right|$, we readily see that

$$
\begin{equation*}
Q_{i}-Q_{i-1} \mid \leqslant 2 V\left(t_{i-1}, t_{i+n} ; y_{0}^{*}, \ldots, y_{n}^{*}\right) \tag{6}
\end{equation*}
$$

Let $P_{i}=Q_{i}-Q_{i-1}$; if $m=k(n+1)+r, 0 \leqslant r \leqslant n$, it is clear that

$$
\begin{equation*}
\sum_{i=1}^{m-n}\left|P_{i}\right|=\sum_{s=0}^{n} \sum_{i=0}^{k-1}\left|P_{i(n+1)+s}\right|+\sum_{i=k(n+1)}^{m}\left|P_{i}\right| . \tag{7}
\end{equation*}
$$

Combining (6) and (7), the conclusion is a direct consequence of the following elementary observation: If $\left\{u_{0}, \ldots, u_{n}\right\}$ is an ECT-system on the interval $[a, b]$, and u_{n+1} is a real-valued function thereon, then for any sequence $a \leqslant t_{0}<\cdots<t_{k} \leqslant b$,

$$
\begin{equation*}
\sum_{i=0}^{k-1} V\left(t_{i}, t_{i+1} ; u_{0}, \ldots, u_{n}, u_{n+1}\right) \leqslant V\left(a, b ; u_{0}, \ldots, u_{n}, u_{n+1}\right) \tag{8}
\end{equation*}
$$

Q.E.D.

Remark. Equality in formula (8) does not in general occur. Propositions similar to [8, Theorem 2; 6, Theorem 7] also hold in the general case and can easily be derived using our lemma and theorem.

Proof of Theorem. We can assume, without loss of generality, that $y_{0}=1$, identically on $[a, b]$ (cf. formula (4)). We proceed by induction. If $y_{2} \in B V\left(1, y_{1}\right)$, the assertion follows from [8, Theorems 1 and 3], by making the change of variable $s=y_{1}(t)$ (see also [10, Theorem 1.1]).

Assume the assertion to be true for $n=k>1$, let $n=k+1$, and assume that $y_{n+1} \in B V\left(1, y_{1}, \ldots, y_{n}\right)$ on $[a, b]$. We first show that the divided difference
of y_{n+1} with respect to the system $\left\{1, y_{1}, \ldots, y_{n}\right\}$ is uniformly bounded in each proper subinterval of $[a, b]$. To see this, assume for instance that $b^{\prime}<b$, and let $q_{0}<\cdots<q_{n}$ be a fixed set of points of $\left(b^{\prime}, b\right)$, and $t_{0}<\cdots<t_{n}$ any choice of points from the interval $\left[a, b^{\prime}\right]$. Set $Q_{1}=\left[1, y_{1}, \ldots, y_{n} / t_{0}, \ldots, t_{n}\right]$, and $Q_{2}=\left[1, y_{1}, \ldots, y_{n} / q_{0}, \ldots, q_{n}\right]$. Clearly $\left|Q_{2}-Q_{1}\right| \leqslant V\left(a, b ; 1, y_{1}, \ldots\right.$, $\left.y_{n}, y_{n+1}\right)$. Thus

$$
\begin{equation*}
\left|Q_{1}\right| \leqslant V\left(a, b ; 1, y_{1}, \ldots, y_{n}, y_{n+1}\right)+|Q|=C\left(b^{\prime}\right), \tag{9}
\end{equation*}
$$

whence the conclusion follows.
It is readily seen from (1) that the function $C\left(b^{\prime}\right) \cdot y_{n}+y_{n+1}$ is convex with respect to the system $\left\{y_{0}, \ldots, y_{n}\right\}$ on $\left(a, b^{\prime}\right)$ (this was noticed by Mühlbach [11, p. 196]). From the smoothness properties of generalized convex functions (cf., for example, [12]), and the fact that b^{\prime} is arbitrary, we conclude that y_{n+1} has a continuous derivative of order $n-1$ in the open interval (a, b), and $y_{n+1}^{(n-1)}$ has one-sided derivatives thereon.

Let $a<t_{\mathrm{c}}<\cdots<t_{n}<b$, and $Q=\left[y_{0}, \ldots, y_{n+1} / t_{0}, \ldots, t_{n}\right]$. Applying (5) repeatedly and then (4), we see that

$$
\begin{equation*}
Q=\frac{w_{n-1}^{-1}\left(s_{1}\right) \cdot D^{n-2} y_{n+1}\left(s_{1}\right)-w_{n-1}^{-1}\left(s_{0}\right) \cdot D^{n-2} y_{n+1}\left(s_{0}\right)}{w_{n-1}^{-1}\left(s_{1}\right) \cdot D^{n-2} y_{n}\left(s_{1}\right)-w_{n-1}^{-1}\left(s_{0}\right) \cdot D^{n-2} y_{n}\left(s_{0}\right)}, \tag{10}
\end{equation*}
$$

where $t_{0}<s_{0}<s_{1}<t_{n}$.
Let $\left[y_{0}, \ldots, y_{n+1} / t\right]^{+}=\lim _{t_{i} \rightarrow+}\left[y_{0}, \ldots, y_{n+1} / t_{0}, \ldots, t_{n}\right]$, and let $\left[y_{0}, \ldots, y_{n+1} / t\right]^{-}$ be similarly defined. Applying (10), a straightforward computation shows that

$$
\begin{equation*}
\left[y_{0}, \ldots, y_{n+\mathbf{1}} / t\right]^{+}=w_{n}^{-1}(t) \cdot D_{R}^{n-1} y_{n+1}(t) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[y_{0}, \ldots, y_{n+1} / t\right]^{-}=w_{n}^{-1}(t) \cdot D_{L}^{n-1} y_{n+1}(t) \tag{12}
\end{equation*}
$$

If the function u has a nonvanishing derivative everywhere in (a, b), the function v has one-sided derivatives thereon, and both functions are continuous in $[a, b]$, it is easily seen that there is a point $s \in(a, b)$, and two nonnegative numbers p and q, with $p+q=1$, such that

$$
\begin{equation*}
[v(b)-v(a)] /[u(b)-u(a)]=\left[p \cdot v_{L}^{\prime}(s)+q \cdot v_{R}^{\prime}(s)\right] / u^{\prime}(s) \tag{13}
\end{equation*}
$$

Formula (10) is valid for any ECT-system, and in particular for $\left\{D_{0} y_{1}, \ldots, D_{0} y_{n}\right\}$. Thus, if $a<t_{0}<\cdots<t_{n-1}<b$, and $Q=\left[D_{0} y_{1}, \ldots\right.$, $D_{0} y_{n+1} / t_{\mathrm{c}}, \ldots, t_{n-1}$], we see from (10) and (13), that

$$
\begin{equation*}
Q=\left[p \cdot D_{L}^{n-1} y_{n+1}(s)+q \cdot D_{R}^{n-1} y_{n+1}(s)\right] / w_{n}(s), \tag{14}
\end{equation*}
$$

where p and q are nonnegative, $p+q=1$, and $s \in\left(t_{0}, t_{n-1}\right)$.

Let $a<a^{\prime} \leqslant t_{0}<\cdots<t_{m} \leqslant b^{\prime}<b(m>n-1)$, and $Q_{i}=\left[D_{0} y_{1}, \ldots\right.$, $\left.D_{0} y_{n+1} / t_{i}, \ldots, t_{i+n-1}\right]$. Setting $v_{1}=w_{n}^{-1} \cdot D_{L}^{n-1} y_{n+1}$ and $v_{2}=w_{n}^{-1} \cdot D_{R}^{n-1} y_{n+1}$, we see from (14) that $Q_{i}=p_{i} \cdot v_{1}\left(s_{i}\right)+q_{i} \cdot v_{2}\left(s_{i}\right)$, where the numbers p_{i} and q_{i} are nonnegative, $p_{i}+q_{i}=1$, and $s_{i} \in\left(t_{i}, t_{i+n-1}\right)$. Assume for example that $p_{i}-p_{i-1}$ is nonnegative; bearing in mind that $p_{i}-p_{i-1}=$ $q_{i-1}-q_{i}$, a straightforward computation shows that

$$
\begin{align*}
Q_{i}-Q_{i-1}= & p_{i} \cdot\left[v_{1}\left(s_{i}\right)-v_{1}\left(s_{i-1}\right)\right] \\
& +q_{i} \cdot\left[v_{2}\left(s_{i}\right)-v_{2}\left(s_{i-1}\right)+\left(p_{i}-p_{i-1}\right) \cdot\left[v_{2}\left(s_{i-1}\right)-v_{1}\left(s_{i-1}\right)\right] .\right. \tag{15}
\end{align*}
$$

From (11), (12), and the fact that the points s_{i-1} and s_{i} are in the interval (t_{i-1}, t_{i+n}), we readily see that

$$
\begin{aligned}
\left|Q_{i}-Q_{i-1}\right| & \leqslant\left[p_{i}+q_{i}+\left(p_{i}-p_{i+1}\right)\right] \cdot V\left(t_{i-1}, t_{i+n} ; 1, y_{1}, \ldots, y_{n}, y_{n+1}\right) \\
& \leqslant 2 V\left(t_{i-1}, t_{i+n} ; 1, y_{1}, \ldots, y_{n}, y_{n+1}\right)
\end{aligned}
$$

which is similar to formula (6). We thus conclude, as in the proof of our lemma, that

$$
\begin{equation*}
D_{0} y_{n+1} \in B V\left(D_{0} y_{1}, \ldots, D_{0} y_{n}\right) \quad \text { on }\left[a^{\prime}, b^{\prime}\right] . \tag{16}
\end{equation*}
$$

Combining the inductive hypothesis with formula (16) and the Lemma, we can readily establish the validity of our theorem for any closed subinterval of (a, b). Noting that the points s_{i} that appear in (15) are all interior to the interval $\left[a^{\prime}, b^{\prime}\right]$, we see that the only thing that does not allow us to apply the above procedure to the interval [a, b] itself is the fact that, so far, we have not shown that the function y_{n+1} is differentiable at the end points of $[a, b]$. This is in fact all that remains to be shown.

By an obvious inductive procedure involving our lemma, we easily see that $y_{n} \in \operatorname{BV}\left(1, y_{1}, \ldots, y_{n-1}\right)$ on $[a, b]$ (remember that $y_{0}=1$); thus, if $a \leqslant t_{0}<\cdots<t_{m} \leqslant b^{\prime}<b,(m>n-1), Q_{i}=\left[y_{0}, \ldots, y_{n-1}, y_{n+1} / t_{i}, \ldots, t_{i+n-1}\right]$, and $R_{i}=\left[y_{0}, \ldots, y_{n-1}, y_{n} / t_{i}, \ldots, t_{i+n-1}\right]$, is it clear from (3) and (9) that $\left|Q_{i}-Q_{i-1}\right| \leqslant C\left(b^{\prime}\right) \cdot\left|R_{i}-R_{i-1}\right| \leqslant C\left(b^{\prime}\right) \cdot V\left(t_{i-1}, t_{i+n-1} ; y_{0}, \ldots, y_{n-1}, y_{n}\right)$, which is similar to formula (6). Thus, as in our lemma, we conclude that $y_{n+1} \in B V\left(1, y_{1}, \ldots, y_{n-1}\right)$ on $\left[a, b^{\prime}\right]$. Since b^{\prime} is arbitrary, repeating this procedure an adequate number of times, we conclude that $y_{n+1} \in B V\left(1, y_{1}\right)$ on $\left[a, b^{\prime}\right]$. Since, as we have shown, the theorem is true for $n=1, y_{n+1}$ has a right derivative everywhere in $\left[a, b^{\prime}\right)$, and in particular at a. Thus y_{n+1} is differentiable at a. A similar reasoning is used to establish the differentiability of y_{n+1} at the other end point.
Q.E.D.

Acknowledgment

The author is grateful to Professor A. W. Roberts for kindly making available a copy of Ref. [4].

References

1. S. Karlin and W. Studden, "Tchebycheff Systems, With Applications in Analysis and Statistics," Interscience, New York, 1966.
2. S. Karlin, "Total Positivity," Stanford Univ. Press, Stanford, Calif., 1968.
3. Z. Ziegler, Generalized convexity cones, Pacific J. Math. 17 (1966), 561-580.
4. E. Hopf, Über die Zusammenhänge zwischen gewissen höheren Differenzenquotienten reeller Funktionen einer reellen Variablen und deren Differenzierbarkeitseigenschaften," Thesis, University of Berlin, 1926.
5. T. Popoviciu, Sur quelques propriétés des fonctions d'une ou de deux variables réelles, Mathematica (Cluj) 8 (1934), 1-85.
6. A. M. Russell, Functions of bounded kth. variation, Proc. London Math. Soc. 26 (1973), 547-563.
7. G. Mühlbach, A recurrence formula for generalized divided differences and some applications, J. Approximation Theory 9 (1973), 165-172.
8. A. W. Roberts and D. E. Varberg, Functions of bounded convexity, Bull. Amer. Math. Soc. 75 (1969), 568-572.
9. A. W. Roberts and D. E. Varberg, "Convex Functions," Academic Press, New York/London, 1973.
10. A. M. Russell, Functions of bounded second variation and Stieltjes-type integrals; J. London Math. Soc. 2 (1970), 193-208.
11. G. Мühlbach, Čebyšev-Systeme und Lipschitzklassen, J. Approximation Theory 9 (1973), 192-203.
12. R. A. Zalik, Smoothness properties of generalized convex functions, Proc. Amer. Math. Soc. 56 (1976), 118-120.

[^0]: * Present address: Department of Mathematics, Auburn University, Auburn, Alabama 36830.

